Contents lists available at ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

Promotional effect of Nb additive on the activity and hydrothermal stability for the selective catalytic reduction of NO_x with NH_3 over $CeZrO_x$ catalyst

Shipeng Ding, Fudong Liu*, Xiaoyan Shi, Hong He**

State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China

ARTICLE INFO

Article history: Received 23 April 2015 Received in revised form 21 June 2015 Accepted 26 June 2015 Available online 17 July 2015

Keywords: Selective catalytic reduction Nitrogen oxides Diesel engine exhaust Hydrothermal stability CeNbZrO_x mixed oxide

ABSTRACT

The promotional mechanism of Nb addition on the activity and hydrothermal stability of $CeZr_2O_x$ catalyst for the selective catalytic reduction of NO_x with NH₃ (NH₃-SCR) was investigated by various methods including N₂-physisorption, XRD, H₂-TPR and *in situ* DRIFTS. The Nb-promoted $CeZr_2O_x$ catalyst showed remarkable NH₃-SCR activity together with excellent N₂ selectivity, SO_2/H_2O resistance and outstanding hydrothermal stability. The characterization results showed that the introduction of Nb to $CeZr_2O_x$ not only resulted in the high surface area and strong redox ability, but also promoted the adsorption and activation of NH₃ and enhanced the reactivity of adsorbed nitrate together with NH₃ species. All the above features were favorable for the superior NH₃-SCR performance. In addition, the CeNb_{3,0}Zr₂O_x catalysts hydrothermally aged below 800 °C still possessed high redox ability. The novel CeNb_{3,0}Zr₂O_x catalyst was a promising candidate for the removal of NO_x from diesel engine.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Nitrogen oxides (NO_x), emitted from mobile resources such as diesel engines and stationary resources like coal-fired power plants have been major atmospheric pollutants. The selective catalytic reduction of NO_x with NH₃ (NH₃-SCR) is the most widely employed technique to control the emission of NO_x, and the most commercially used catalyst is V_2O_5 -WO₃/TiO₂ [1–3]. However, there still remains room for improvement with this catalyst system, such as low hydrothermal stability, a narrow operating temperature window and the unselective oxidation of NH₃ which produces ozone-depleting N₂O at high temperatures [2,4,5]. Consequently, it is of great significance to develop novel NH₃-SCR catalysts, with outstanding low-temperature NO_x conversion, high N₂ selectivity, excellent hydrothermal stability and a broad operating temperature window, which will substitute for the conventional V₂O₅-WO₃/TiO₂ catalyst.

E-mail addresses: fudongliu@lbl.gov, lfd1982@gmail.com (F. Liu), honghe@rcees.ac.cn (H. He).

http://dx.doi.org/10.1016/j.apcatb.2015.06.055 0926-3373/© 2015 Elsevier B.V. All rights reserved.

CeO₂ was used as oxygen storage component of conventional three-way catalysts (TWCs) in the late 1980s [6]. However, pure CeO₂ showed poor stability and was susceptible sintering at high temperatures. The introduction of ZrO₂ to CeO₂ resulted in effectively improving the thermal stability of CeO₂ [6,7]. In model Pd three-way catalysts, catalysts prepared on the CeZrO_x solid solution retained larger oxygen storage capacity than those based on pure CeO_2 after aging [7]. The CeZrO_x is considered to be one of the most promising materials for NO_x removal [8]. It was reported that the WO_3/CeO_2 -ZrO₂ catalyst exhibited nearly 100% NO_x conversion in the temperature range of 200-500 °C, and also showed higher thermal stability in comparison to the conventional V₂O₅-WO₃/TiO₂ catalyst in NH₃-SCR reaction [9]. Gao et al. developed a novel Ce catalyst supported on sulfated ZrO₂ for NH₃-SCR reaction, which showed superior catalytic activity due to the well dispersion of CeO₂, abundant acid sites together with increasing surface area and enrichment of Ce³⁺ after sulfation [10]. Ce_{0.75}Zr_{0.25}O₂-PO₄³⁻ catalyst prepared by impregnating phosphates on Ce_{0.75}Zr_{0.25}O₂ still presented high SCR activity at 300-400 °C after hydrothermalaged at 760 °C for 48 h, which might result from the fact that phosphates improved NH₃ adsorption and suppressed the unselective oxidation of NH₃ at high temperatures [11]. It was also found that the morphology of $CeZrO_x$ had a significant influence on the performance of MnO_x/CeO₂-ZrO₂ catalyst for the NH₃-SCR

^{*} Corresponding author. Present address: Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, United States. ** Corresponding author. Fax: +86 10 62849123.

reaction, and MnO_x/CeO_2 - ZrO_2 nanorods exhibited higher activity than nanotubes and nanopolyhedra [12]. $MnO_x/Ce_{0.9}Zr_{0.1}O_2$ nanorods exhibited better NO_x reduction activity than $Ce_{0.9}Zr_{0.1}O_2$. At the same time, experimental results together with density functional theory calculations clearly demonstrated that MnO_x species could easily form an oxygen vacancy distortion and were highly dispersed on the surface of $Ce_{0.9}Zr_{0.1}O_2$ nanorods [13].

In addition, Nb-containing compounds and materials are currently essential catalysts for a variety of reactions, like the hydrogenation of alkane and the catalytic removal of nitrogen oxides [14]. It was reported that the NH₃-SCR reactivity of Nbcontaining MnO_x -CeO₂ was dramatically improved as a result of Nb addition, and the characterization results indicated that the strong interaction between Nb and Mn catalytic active sites resulted in a remarkable dispersion of the oxidizing sites together with acidic sites and inhibited the unselective NH₃ oxidation at high temperatures [15]. CeO₂-Nb₂O₅ catalyst containing abundant surface absorbed oxygen, which might result from the short-range activation effect of Nb to Ce species, also exhibited excellent SCR performance [16].

Therefore, in the present work, a series of Nb-promoted $CeZr_2O_x$ catalysts was prepared by a homogeneous precipitation method and was applied in the NH₃-SCR process. The obtained $CeNb_{3,0}Zr_2O_x$ catalyst exhibited excellent SCR activity, N₂ selectivity, SO₂/H₂O resistance and hydrothermal durability. The structure, redox ability and reactivity of adsorbed NO_x and NH₃ species on the catalysts were systematically characterized using various methods including N₂ physisorption, XRD, H₂-TPR and *in situ* DRIFTS. The characterization results indicated that the addition of Nb significantly improved the surface area, redox ability and reactivity of adsorbed nitrate together with NH₃ species. High redox ability and abundant acid sites still existed on CeNb_{3,0}Zr₂O_x catalysts hydrothermally aged below 800 °C.

2. Experimental

2.1. Catalysts preparation and activity test

A homogeneous precipitation method using urea as precipitant was applied to prepare the pure Nb₂O₅ and CeNb_aZr₂O_x catalysts. In a typical preparation process, the desired amount of Ce(NO₃)₃·6H₂O, NbCl₅ and Zr(NO₃)₄·5H₂O were dissolved in deionized water, respectively. Superfluous urea was then added into the mix solution, with continuous stirring at 90 °C for 12 h. Subsequently, the precipitate was collected by filtration and washing with excess deionized water, dried at 100 °C overnight and calcined at 500 °C for 3 h. The catalysts were denoted as $CeNb_aZr_2O_x$ (*a* = 0, 0.5, 1.0, 3.0, 6.0) where a represented the molar ratio of Nb/Ce, and the Ce/Zr molar ratio was fixed at 1:2. The expected weight percentages of components in $CeNb_aZr_2O_x$ catalysts are shown in Table S1 in Supporting information. For comparison, commercial V₂O₅-WO₃/TiO₂ catalyst with 2 wt.% V₂O₅ and 10 wt.% WO₃ was also prepared using the conventional impregnation method. All the catalysts were crushed and sieved to 40-60 mesh for activity evaluation.

The hydrothermal-aged CeNb_{3.0}Zr₂O_x catalysts were also obtained by treating the fresh samples in air containing 10 vol.% H₂O at desired temperature for 8 h or 48 h with a GHSV of 10,000 h⁻¹. The hydrothermal-aged samples were denoted as CeNb_{3.0}Zr₂O_x-*t*, where *t* represented the treatment temperature in °C.

The NH₃-SCR activity of samples was performed in a fixed-bed quartz tube reactor at atmospheric pressure. The experimental conditions were as follows: 500 ppm NO, 500 ppm NH₃, 5 vol.% O_2 , 100 ppm SO₂ (when used), 5 vol.% H₂O (when used), N₂ balance and flow rate of 500 mL/min. The effluent gas was continuously

analyzed by an FTIR spectrometer (Nicolet Nexus 670) which was equipped with a heated, low volume multiple-path gas cell (2 m). The FTIR spectra were collected after 1 h while the NH₃-SCR reaction reached a steady state. NO_x conversion and N₂ selectivity were calculated as follows:

NO_x conversion =
$$(1 - \frac{[NO]_{out} + [NO_2]_{out}}{[NO]_{in} + [NO_2]_{in}}) \times 100\%$$

$$N_2 \text{ selectivity} = \frac{[NO]_{in} + [NH_3]_{in} - [NH_2]_{out} - 2[N_2O]_{out}}{[NO]_{in} + [NH_3]_{in}} \times 100\%$$

2.2. Characterization

The N₂ adsorption–desorption isotherms over Nb₂O₅, CeNb_aZr₂O_x and hydrothermal-aged CeNb_{3.0}Zr₂O_x catalysts were achieved using a Quantachrome Autosorb-1C instrument at liquid N₂ temperature (77 K). Before the N₂ physisorption, all the catalysts were outgassed at 300 °C for 5 h in vacuum. The specific surface areas were calculated by BET equation at *P*/*P*₀ in the partial pressure range of 0.05–0.35.

Powder X-ray diffraction (XRD) patterns of the samples were conducted on a computerized PANalytical X'Pert Pro diffractometer with Cu K α (λ = 0.15406 nm) radiation. The data of 2 θ from 20 to 80° were collected at a step of 8°/min with the step size of 0.07°.

The H₂-TPR experiments were carried out on a Micromeritics AutoChem 2920 chemisorption analyzer. In a typical measurement, 100 mg of the sample was firstly preprocessed in a flow of 20 vol.% O_2/N_2 with the total flow rate of 50 mL/min at 400 °C for 0.5 h, and then lowered the temperature to ambient temperature (30 °C) followed by Ar purging for another 0.5 h. Then the temperature was linearly increased from 30 to 1000 °C at the heating rate of 10 °C/min in a flow of 10 vol.% H₂/Ar (50 mL/min). The H₂ consumption amount was detected by a thermal conductivity detector (TCD).

The *in situ* DRIFTS experiments were performed on an FTIR spectrometer (Nicolet Nexus 670) equipped with a smart collector and an MCT/A detector, which was cooled by liquid nitrogen. Prior to each experiment, the catalyst was pretreated in $20 \text{ vol.}\% \text{ O}_2/\text{N}_2$ at $400 \,^{\circ}\text{C}$ for 0.5 h and then cooled down to $200 \,^{\circ}\text{C}$. The background spectrum which was collected in flowing N₂ was automatically subtracted from the sample spectrum. The reaction conditions were as follows: 500 ppm NH_3 , 500 ppm NO, $5 \text{ vol.}\% \text{ O}_2$, N₂ balance and 300 mL/min total flow rate. All spectra were recorded by accumulating 100 scans with a resolution of $4 \, \text{cm}^{-1}$.

3. Results and discussion

3.1. NH₃-SCR activity

The NO_x conversion and N₂ selectivity in NH₃-SCR reaction over pure Nb₂O₅ and CeNb_aZr₂O_x catalysts with different Nb contents under a GHSV of 50,000 h⁻¹ are shown in Fig. 1. $CeZr_2O_x$ exhibited low NO_x conversion, poor N₂ selectivity along with a narrow operating temperature window, and the maximum NO_x conversion was only 90% at 350 °C. Pure Nb₂O₅ sample showed negligible SCR activity and the NO_x conversion was below 10% in the whole temperature range. Nevertheless, for Nb-containing CeNb_aZr₂O_x catalysts, the addition of Nb resulted in a great enhancement of NO_x conversion both in low and high temperatures, high N₂ selectivity and a broad temperature window, which indicated that the coexistence of Nb and CeZr₂O_x species was of essential importance for high NH₃-SCR performance. CeNb_{3.0}Zr₂O_x catalyst with the molar ratio of Nb:Ce = 3.0:1 showed the highest NH₃-SCR performance in the entire temperature range, over which the complete removal of NO_x was accomplished from 225 to 425 °C under the GHSV of 50,000 h^{-1} . The NO_x conversion was over 90% above 250 °C

Fig. 1. NO_x conversion and N₂ selectivity as a function of temperature over pure Nb₂O₅ and CeNb_aZr₂O_x (a = 0, 0.5, 1.0, 3.0, 6.0) catalysts in NH₃-SCR reaction. Reaction conditions: [NO] = [NH₃] = 500 ppm, [O₂] = 5 vol.%, GHSV = 50,000 h⁻¹.

even under a quite high GHSV of $200.000 h^{-1}$ (see Fig. S1), which indicated that the obtained catalyst exhibited excellent resistance to high space velocity and was suitable to applications of diesel engines where there was only limited space for the installation of SCR catalysts. For conventional V₂O₅-WO₃/TiO₂ catalyst, one of the inevitable drawbacks was the unselective oxidation of NH₃ at high temperatures, which would lower the NO_x conversion and produce a large amount of N₂O. However, the N₂ selectivity of novel CeNb_{3.0}Zr₂O_x catalyst was as high as over 99% even at 450 $^{\circ}$ C, which was promising for the elimination of NO_x from diesel engine exhaust. Further increasing the molar ratio of Nb/Ce from 3.0:1 to 6.0:1 would lead to a slight decrease of NO_x conversion at low temperature, probably due to the coverage of active cerium sites by excess Nb species. In addition, the NH₃ conversion in NH₃-SCR reaction over $CeZr_2O_x$ and $CeNb_{3,0}Zr_2O_x$ is presented in Fig. S2. The results indicated that the introduction of Nb greatly improved the conversion of NH₃ at low temperatures, and the NH₃ was almost completely consumed over $CeZr_2O_x$ and $CeNb_{3,0}Zr_2O_x$ samples at high temperatures. The NH3-SCR results indicated that some synergistic effect possibly exist between Nb, Ce and Zr species, which will be discussed later in this work.

3.2. Effect of H_2O and SO_2

In practical applications, the combustion exhaust containing water vapor and SO₂ may lead to the deactivation of NH₃-SCR catalyst. Therefore, it was worthwhile to investigate the influence of H₂O/SO₂ on the activity over CeNb_{3.0}Zr₂O_x catalyst. As shown in Fig. 2(A), the addition of 5 vol.% H₂O had a negligible inhibition effect on the NH₃-SCR performance of CeNb_{3.0}Zr₂O_x and the NO_x conversion was almost 100% for the entire 24 h, suggesting that CeNb_{3.0}Zr₂O_x catalyst exhibited strong resistance to H₂O poisoning at 250 °C. The effect of 100 ppm SO₂ on CeNb_{3.0}Zr₂O_x catalyst activity is shown in Fig. 2(B). The NO_x conversion did not show any decrease for the first 14 h when SO₂ was introduced into the reaction atmosphere. However, further increasing the reaction time resulted in a slight decline and reduced to 80%, due to the deposition of ammonium sulfate/bisulfate on the surface, which might

Fig. 2. The effect of H_2O (A), SO_2 (B) on NH_3 - SCR activity over $CeNb_{3,0}Zr_2O_x$ catalyst with 5 vol.% H_2O or $100 \text{ ppm } SO_2$ at $250 \,^{\circ}\text{C}$; (C) NO_x conversion in NH_3 -SCR reaction as a function of temperature without H_2O and SO_2 over $CeNb_{3,0}Zr_2O_x$ catalysts after treatment in H_2O/SO_2 for 24 h. Reaction conditions: $[NO] = [NH_3] = 500 \text{ ppm}$, $[O_2] = 5 \text{ vol.}\%$, $[SO_2] = 100 \text{ ppm}$ (when used), $[H_2O] = 5 \text{ vol.}\%$ (when used), $GHSV = 50,000 \text{ h}^{-1}$.

block the active sites. In order to further study the influence of H_2O/SO_2 poisoning on the performance of the catalysts treated in the NH₃-SCR reaction at 250 °C for 24 h, the activity of CeNb_{3,0}Zr₂O_x samples in Fig. 2(A) and (B) was retested in the absence of H_2O and SO₂ and the results are shown in Fig. 2(C). It was obvious that CeNb_{3,0}Zr₂O_x after treatment in H₂O showed high activity, and nearly 100% NO_x conversion was obtained between 200 and 450 °C, which was almost the same as that of the fresh catalyst. Even though the SO₂ treatment had a negative effect on the activity of CeNb_{3,0}Zr₂O_x, the NO_x conversion was still more than 80% above 250 °C. In short summary, the CeNb_{3,0}Zr₂O_x catalyst exhibited high resistance to H₂O and SO₂ poisoning, especially when the temperature was more than 250 °C, and could be used to eliminate the NO_x from diesel engine exhaust containing a handful of H₂O and SO₂.

3.3. Promotional effect of Nb addition on the SCR activity

3.3.1. N₂ physisorption

Fig. S3 shows the N₂ adsorption–desorption isotherms of the catalysts. It could be observed that all the samples displayed type IV isotherms in the relative pressure (P/P_0) range of 0.4–0.8 according to the IUPAC classification, which were typical for mesoporous materials (2–50 nm) [17]. In addition, the BET surface area and

Table 1
BET surface area and pore volume of Nb_2O_5 and $CeNb_aZr_2O_x$ samples

Catalysts	$S_{\text{BET}}^{a}(m^{2}/g)$	Pore volume ^b (cm ³ /g)
Nb ₂ O ₅	68.4	0.11
$CeZr_2O_x$	107.3	0.13
$CeNb_{0.5}Zr_2O_x$	170.1	0.25
$CeNb_{1.0}Zr_2O_x$	198.1	0.20
$CeNb_{3,0}Zr_2O_x$	208.7	0.18
$CeNb_{6.0}Zr_2O_x$	206.5	0.17

^a BET surface area.

^b Total pore volume.

Fig. 3. Powder XRD of Nb₂O₅ and CeNb_aZr₂O_x catalysts with different Nb loadings.

pore volume derived from N₂ physisorption results of Nb₂O₅ and $CeNb_{a}Zr_{2}O_{x}$ samples are shown in Table 1. It was obvious that the addition of Nb₂O₅ to CeZr₂O_x had a great influence on the surface and pore volume of the samples. As the molar ratio of Nb/Ce increased from 0.5:1 to 3.0:1, the surface area of the corresponding samples grew significantly. CeNb_{3.0}Zr₂O_x catalyst, with molar ratio of Nb/Ce = 3.0:1, showed the largest surface area of 208.7 m^2/g among the Nb-containing catalysts, which was in consistent with the best NH₃-SCR performance. However, further improving the Nb/Ce molar ratio to 6.0:1 led to a slight decrease of the surface area. It was believed that, compared to CeNb_{3.0}Zr₂O_x catalyst, $CeNb_{6,0}Zr_2O_x$ catalyst showed a slight decrease of NO_x conversion at low temperature, which possibly result from the coverage of active cerium sites by excess Nb species rather than the decline of surface area. These results indicated that the introduction of Nb could induce structural modification of the samples and lead to a higher surface area, which was beneficial for the dispersion of active components and resulted in high NO_x conversion over Nb-containing catalysts for NH₃-SCR [18].

3.3.2. XRD results

Powder XRD was conducted to investigate the crystal structural of Nb₂O₅ and CeNb_aZr₂O_x catalysts, and the results are shown in Fig. 3. The CeZr₂O_x catalyst provided typical diffraction patterns for the ZrO₂ tetragonal phase (JCPDS 50-1089) and the CeO₂ cubic phase (JCPDS 34-0394), which indicated that no strong interaction existed between Ce and Zr, leading to the segregation of CeO₂ and ZrO₂ crystallites [19]. With the improvement of Nb/Ce molar ratio, the band intensity ascribed to CeO₂ and ZrO₂ over Nbcontaining catalysts decreased significantly. No diffraction peaks attributed to Nb species were detected in the XRD patterns for all the Nb-containing catalysts, indicating that Nb species existed as amorphous. For $CeNb_{3,0}Zr_2O_x$ and $CeNb_{6,0}Zr_2O_x$ catalysts, no obvious peak attributed to CeO2 or ZrO2 was observed suggesting the formation of homogeneously dispersed crystallites or a complete amorphous structure. Amorphous structure usually possessed larger surface area than the crystallized one [20], which might be one of the essential reasons why the surface area of Nbcontaining catalysts was higher than that of $CeZr_2O_x$ catalyst.

3.3.3. H₂-TPR

H₂-TPR experiments were performed to investigate the redox ability of Nb₂O₅, CeZr₂O_x and CeNb_{3.0}Zr₂O_x catalysts, and the results are shown in Fig. 4. For the CeZr₂O_x catalyst, the reduction peak at about 510 °C was assigned to the reduction of surface Ce⁴⁺ to Ce³⁺, and the peak at 736 °C could be attributed to the reduction of bulk CeO₂ [21–23]. In addition, the reduction peak of Nb₂O₅ was about 873 °C, which was responsible for reduction of bulk Nb₂O₅ to

Fig. 4. H₂-TPR profiles of Nb₂O₅, CeZr₂O_x and CeNb_{3,0}Zr₂O_x catalysts.

Nb₂O₄ [16,24]. Over CeNb_{3.0}Zr₂O_x catalyst, three reduction peaks centered at about 485, 762 and 905 °C were observed. The two peaks at higher temperature belonged to the reduction of bulk CeO₂ and Nb₂O₅, respectively. The reduction peak at 485 °C, which was ascribed to the reduction of surface Ce⁴⁺ to Ce³⁺ showed lower reduction temperature in comparison to $CeZr_2O_x$ sample, which indicated that redox ability of CeNb₃₀Zr₂O_x was greatly improved after the addition of Nb. Higher redox ability of CeNb₃₀Zr₂O_x could enhance the mobility of surface oxygen due to the strong synergetic effect among Zr, Ce and Nb species. It was believed that the synergetic effect led to severe structural distortion and affluent oxygen defects [25,26]. The oxygen defects promoted oxygen diffusion from the subsurface layers and might progressively proceed deeper into the bulk [27,28]. Furthermore, the H₂ consumption for the reduction of surface Ce⁴⁺ to Ce³⁺ was calculated and the values are listed in Fig. 4. The results in Table S1 showed that the weight percentage of CeO_2 in $CeNb_{3,0}Zr_2O_x$ was lower than that in $CeZr_2O_x$. However, the H₂ consumption of $CeNb_{3,0}Zr_2O_x$ was 615.5 μ mol H₂/g_{cat}, which was higher than that of CeZr₂O_x (254.7 μ mol H₂/g_{cat}), indicating the formation of more reducible Ce species after the introduction of Nb to CeZr₂O_x. All the above features were beneficial for the excellent SCR activity.

3.3.4. NH_3 and NO_x adsorption ability

The *in situ* DRIFTS of NH₃ adsorption at 200 °C was conducted to investigate the differences of acidity on the catalysts after Nb introduction and the results are illustrated in Fig. 5(A). After exposure to NH₃ and N₂ purge, the catalyst surface was mainly covered by a couple of NH₃ species. The bands centered at 1603 cm⁻¹ and 1209, 1263, 1193, 1182 cm⁻¹ were assigned to asymmetric and symmetric bending vibrations of the N–H bonds in coordinated NH₃ linked to Lewis acid sites, respectively [29–31]. In addition, the bands at 3360, 3260 and 3155 cm⁻¹ were ascribed to N–H stretching modes of coordinated NH₃ [32]. The bands at 1668 cm⁻¹ and 1434, 1444, 1414 cm⁻¹ attributed to symmetric and asymmetric bending vibrations of NH₄⁺ species on Brønsted acid sites were also observed [4,33–36]. Several negative bands around 3700 cm⁻¹ ascribed to the hydroxyl consumption were also found, which might result from the reaction between hydroxyl and NH₃ [4,25].

Pure Nb₂O₅ showed slight amount of Brønsted acid sites and Lewis acid sites. However, the introduction of Nb to $CeZr_2O_x$ resulted in more acid sites on the catalysts. $CeNb_{3,0}Zr_2O_x$ catalyst, with Nb/Ce molar ratio of 3.0:1, exhibited the largest amount of NH₄⁺ bound to Brønsted acid sites and NH₃ linked to Lewis acid sites among the series catalysts, which was quite in accordance with its highest NH₃-SCR performance. It has been reported that the surface acidity of NbO_x-MnO_x-CeO₂ was significantly increased as a result of Nb addition [37]. In addition, the Nb–OH bond was

Fig. 5. In situ DRIFTS of 500 ppm NH₃ adsorption (A) and 500 ppm NO+5 vol.% O₂ adsorption (B) with 300 mL/min flow rate at 200 °C on Nb₂O₅ and CeNb_aZr₂O_x series catalysts.

responsible for the Brønsted acid site and Nb=O bond for the Lewis acid site [16]. Further increasing the Nb/Ce molar ratio from 3.0 to 6.0 led to a slight decrease of acid sites. In addition, the desorption of adsorbed NH₃ species at various temperatures over CeZr₂O_x and CeNb_{0.3}Zr₂O_x catalysts showed that CeZr₂O_x showed negligible amount of NH₃ species at 350 °C, while several bands still remained on CeNb_{3.0}Zr₂O_x sample (see Fig. S4). The results indicated that the introduction of Nb enhanced both the amount and strength of acid sites, which were beneficial for the adsorption together with activation of NH₃, leading to an excellent NH₃-SCR activity in the entire temperature range [14].

Fig. 5(B) shows the *in situ* DRIFTS results of NO_x adsorption over Nb₂O₅ and CeNb_aZr₂O_x catalysts. After NO + O₂ adsorption for 1.0 h and N₂ purge for another 0.5 h, a couple of distinct bands assigned to bidentate nitrate (1583 and 1560 cm⁻¹) and bridging nitrate (1609, 1622, 1237 and 1217 cm⁻¹) were observed [34,38–40]. It was quite clear that the introduction of Nb decreased both the intensity and quantity of bands assigned to nitrate species, which might arise from the fact that the addition of Nb promoted the formation of more acid sites together with fewer alkali sites where the nitrate species adsorbed [33]. It was also reported that the adsorption of nitrate species on MnO_x -NeO_x-CeO₂ was weaker than that on MnO_x -CeO₂ as a result of Nb addition [37].

3.3.5. Reactivity of adsorbed NH₃ species

The *in situ* DRIFTS reaction between pre-adsorbed NH₃ and NO+O₂ at 200 °C was conducted to investigate the reactivity of adsorbed NH₃ species. As shown in Fig. 6(A), the surface of CeZr₂O_x was mainly covered by ionic NH₄⁺ (1414 and 1444 cm⁻¹) and coordinated NH₃ (3360, 3260, 1263 and 1160 cm⁻¹) after the catalyst was pre-adsorbed to NH₃. After the introduction of NO+O₂, the bands at 1160 cm⁻¹ diminished in 5 min. However, the bands centered at 1444, 1414 and 1263 cm⁻¹ were almost the same in 60 min, which might indicate that the adsorbed NH₃ species over CeZr₂O_x were less active in the SCR reaction.

Compared to $CeZr_2O_x$, in Fig. 6(B), when NO + O_2 was introduced to $CeNb_{3,0}Zr_2O_x$ which was pre-exposed to NH₃, ionic NH₄⁺ (1668 and 1434 cm⁻¹) and coordinated NH₃ (3360, 3260, 3155, 1603

and 1209 cm⁻¹) showed an apparent decrease in intensity due to the reaction between NO+O₂ and NH₃ species. After 3 min, all bands ascribed to NH₃ species were replaced by nitrate species. The results indicated that both ionic NH₄⁺ and coordinated NH₃ on CeNb_{3.0}Zr₂O_x were quite active in the SCR reaction. Therefore, it was safe to reach the conclusion that the introduction of Nb significantly improved the reaction activity of adsorbed NH₃ species on CeNb_{3.0}Zr₂O_x.

3.3.6. Reactivity of adsorbed NO_x species

The reactivity of adsorbed NO_x species in NH₃-SCR reaction on CeZr₂O_x and CeNb_{3.0}Zr₂O_x catalysts was also examined by the *in situ* DRIFTS of reaction between pre-adsorbed NO_x and NH₃ at 200 °C. For the CeZr₂O_x catalyst (Fig. 7(A)), after NO+O₂ preadsorption and N₂ purging, the catalyst surface was covered with bidentate nitrate (1583 and 1560 cm⁻¹) along with bridging nitrate (1609, 1217 and 1237 cm⁻¹). When NH₃ was introduced, the intensity of the bands attributed to nitrate species did not show an obvious change. The adsorbed nitrate could not easily react with NH₃ species. The results indicated that the adsorbed nitrate species over CeZr₂O_x catalyst were mostly inactive during the NH₃-SCR process.

As shown in Fig. 7(B), the surface of CeNb_{3.0}Zr₂O_x catalyst was mainly covered by bridging nitrate centered at 1622 and 1217 cm⁻¹ and bidentate species around 1583 cm⁻¹ after exposed to NO + O₂. When NH₃ was introduced, the bands ascribed to bridging nitrate species were totally consumed in 3 min, however, the bidentate species did not decrease obviously which might indicate that the bridging nitrate rather than bidentate nitrate could react with NH₃. In addition, the bands corresponding to ionic NH₄⁺ and coordinated NH₃ were appeared after 5 min. From the comparison between Fig. 7(A) and (B), it was believed that the adsorbed nitrate species on CeNb_{3.0}Zr₂O_x were more reactive than those on CeZr₂O_x, which resulted in the enhanced NH₃-SCR activity.

It was believed that the redox ability and adsorption of NH₃ and NO_x of the catalysts played important roles in the NH₃-SCR reaction. In the present study, the CeNb_{3.0}Zr₂O_x catalyst exhibited higher redox ability than the CeZr₂O_x, indicating that the CeNb_{3.0}Zr₂O_x

Fig. 6. In situ DRIFTS of NO+O2 reacted with pre-adsorbed NH3 species at 200 °C on CeZr2Ox (A) and CeNb30Zr2Ox (B) catalysts.

possessed high oxidation ability of NO to NO₂, which was beneficial for the so-called "fast SCR". On one hand, the addition of Nb promoted the adsorption and activation of NH₃, which were considered to be a key step in the NH₃-SCR process. On the other hand, the adsorption of nitrate species over CeNb_{3.0}Zr₂O_x was weaker than that over CeZr₂O_x, due to the fact that the addition of Nb decreased the amount of basic sites where nitrate adsorbed. However, the reaction activity of adsorbed NH₃ and nitrate species over CeNb_{3.0}Zr₂O_x was higher than that over CeZr₂O_x, and both of them could participate in the NH₃-SCR reaction according to the *in-situ* DRIFTS results. It was likely to conclude that the adsorbed NH₃ species could react with adsorbed nitrate to form N₂ and

 H_2O following the Langmuir–Hinshelwood (L–H) mechanism at 200 $^\circ\text{C}.$

3.4. Promotional effect of Nb addition on the hydrothermal stability

3.4.1. Hydrothermal stability test over $CeNb_{3,0}Zr_2O_x$ and $CeZr_2O_x$ catalysts

The hydrothermal stability of NH₃-SCR catalysts is required in the long deNO_x for practical applications, as the diesel engine exhaust temperature can reach as high as 700 °C during the regeneration process of DPF system [41]. Accordingly, the CeNb_{3,0}Zr₂O_x

Fig. 7. In situ DRIFTS of NH₃ reacted with pre-adsorbed NO_x species at 200 °C on CeZr₂O_x (A) and CeNb_{3.0}Zr₂O_x (B) catalysts.

Fig. 8. NO_x conversion in NH₃-SCR reaction as a function of temperature over V₂O₅-WO₃/TiO₂ and CeNb_{0.3}Zr₂O_x catalysts aged in air containing 10 vol.% H₂O at different temperatures for 8 h. Reaction conditions: [NO]=[NH₃]=500 ppm, [O₂]=5 vol.%, GHSV=50,000 h⁻¹.

catalysts were hydrothermally aged at various temperatures for 8 h and the results are illustrated in Fig. 8. It was obvious that after hydrothermal treatment between 600 and 750°C for 8 h, $CeNb_{30}Zr_2O_x$ catalysts showed similar SCR activity, over which more than 90% NO_x conversion was obtained in the temperature range of 250-450 °C. However, further improving the hydrothermal treatment temperature to 800 and 850 °C resulted in an obvious decrease of SCR activity, which might due to the sintering of active component. In addition, as shown in Fig. 9, $CeNb_{3,0}Zr_2O_x$ catalyst hydrothermally treated at 800 °C for 48 h still exhibited high NH₃-SCR activity, over which more than 80% NO_x conversion was obtained above 300 °C. For comparison purpose, the SCR activity of commercial V₂O₅-WO₃/TiO₂ catalyst treated in air containing 10 vol.% H₂O at 700 °C was also studied. The fresh V₂O₅-WO₃/TiO₂ catalyst exhibited high activity with more than 90% NO_x conversion from 250 to 450 $^{\circ}$ C (see Fig. S5). Nevertheless, the NO_x conversion reduced to less than 10% in the whole temperature range after hydrothermal aging at 700 °C for 8 h. Consequently, the $CeNb_{3,0}Zr_2O_x$ showed excellent hydrothermal stability compared to conventional V-based catalyst and was a promising candidate for the removal of NO_x from diesel engine exhaust. The CeZr₂O_x catalysts were also hydrothermally aged at various temperatures to investigate the influence of Nb additive on the hydrothermal stability of Nb containing catalysts. As shown in Fig. S6, as the calcination temperature increased from 600 to 850 °C, the NO_x

Fig. 9. NO_x conversion in NH_3 -SCR reaction as a function of temperature over $CeNb_{3,0}Zr_2O_x$ catalysts aged in air containing 10 vol.% H_2O at 800 °C for 48 h. Reaction conditions: $[NO] = [NH_3] = 500$ ppm, $[O_2] = 5$ vol.%, GHSV = 50,000 h⁻¹.

Table 2

BET surface area, pore volume and H_2 consumption of $\text{CeNb}_{3,0}\text{Zr}_2\text{O}_x$ samples hydrothermally aged at various temperatures for 8 h

Catalysts	S_{BET}^{a} (m ² /g)	Pore volume ^b (cm ³ /g)	H_2 consumption (µmol H_2/g_{cat})
CeNb _{3.0} Zr ₂ O _x -600 °C	136.7	0.22	469.3
CeNb _{3.0} Zr ₂ O _x -650 °C	123.5	0.22	464.2
$CeNb_{3,0}Zr_2O_x-700$ °C	83.5	0.11	109.7
$CeNb_{3.0}Zr_2O_x-750 \circ C$	85.7	0.09	93.3
$CeNb_{3.0}Zr_2O_x-800 \circ C$	85.0	0.15	73.9
CeNb _{3.0} Zr ₂ O _x -850 °C	88.5	0.13	-

^a BET surface area.^bTotal pore volume

Fig. 10. Powder XRD results of $CeNb_{3,0}Zr_2O_x$ catalysts hydrothermally aged at different temperatures for 8 h.

conversion showed a monotonic decline in the entire temperature range. In combination with the results from Fig. 8 and S6, it was likely to conclude that the introduction of Nb to $CeZr_2O_x$ significantly improved the hydrothermal stability of $CeNb_{3.0}Zr_2O_x$. The reasons which were responsible for the high hydrothermal stability of $CeNb_{3.0}Zr_2O_x$ catalyst will be discussed later in this work.

3.4.2. N₂ physisorption

As shown in Fig. S7, the closure point of the hysteresis loops of the samples moved to higher P/P_0 with the increase of hydrothermal aging temperature, indicating that more abundant macropores were formed after hydrothermal aging. Besides, the surface area and pore volume of CeNb_{3.0}Zr₂O_x catalysts hydrothermally treated at different temperatures for 8 h are illustrated in Table 2. It was obvious that increasing the temperature from 600 to 700 °C gave rise to a decline of surface area from 136.7 to 83.5 m²/g. Nevertheless, the catalysts treated at 700–850 °C exhibited similar surface area about 85 m²/g, which indicated that the reduce of surface area resulting from high temperature sintering had reached to the limit above 700 °C, and surface area might not be the main factor that was responsible for the differences of NO_x conversion.

3.4.3. XRD results

In addition, the crystal structure of CeNb_{3.0}Zr₂O_x catalysts after hydrothermal aging was also investigated. As shown in Fig. 10, the CeNb_{3.0}Zr₂O_x catalysts aged at 600 and 650 °C for 8 h showed similar XRD pattern, indicating that the CeNb_{3.0}Zr₂O_x exhibited strong hydrothermal durability below 650 °C. Further increasing the aging temperature to 700 °C above resulted in the formation of Nb₂O₅ and Ce_{0.16}Zr_{0.84}O₂ solid solution due to the incorporation of Zr⁴⁺ with a smaller radius into the lattice of CeO₂ [42]. It was interesting that even after the treatment at 700, 750 and 800 °C, CeNb_{3.0}Zr₂O_x catalyst still remained more than 90% NO_x conver-

Fig. 11. H_2 -TPR profiles of CeNb_{3.0}Zr₂O_x catalysts hydrothermally aged at various temperatures.

sion above 250 °C, which might suggest that the Ce_{0.16}Zr_{0.84}O₂ solid solution was also active in NH₃-SCR reaction. Furthermore, large amount of Ce_{0.16}Zr_{0.84}O₂ solid solution still existed in the CeNb_{3.0}Zr₂O_x catalyst hydrothermally treated at 850 °C. However, CeNb_{3.0}Zr₂O_x-850 °C catalyst exhibited poor SCR activity, indicating that some other factors were also essential for the activity.

3.4.4. H₂-TPR

The H₂-TPR results of hydrothermally aged CeNb_{3.0}Zr₂O_x catalysts are illustrated in Fig. 11. For all the catalysts, the reduction peaks less than 600 °C belonged to the reduction of surface Ce⁴⁺, and the peaks centered at high temperatures were ascribed to the reduction of bulk CeO₂ and Nb₂O₅. In addition, the H₂ consumption for the reduction of surface Ce⁴⁺ to Ce³⁺ was listed in

Table 2, and it was clear that increasing the hydrothermal aging temperature from 600 to 800°C resulted in a decrease of the H_2 consumption from 469.3 to 73.9 μ mol H_2/g_{cat} . The catalysts hydrothermally aged at less than 750 °C showed similar reduction peaks centered at about 500 °C. It was likely that the similar reduction temperature was responsible for the similar NH₃-SCR activity. CeNb_{3.0}Zr₂O_x-800 °C sample showed a relative low reduction temperature around 454°C, indicating that it should exhibit high activity. However, the lack of enough reducible surface Ce⁴⁺ lowered SCR conversion. For CeNb₃₀Zr₂O_x-850 °C sample, no obvious peak ascribed to Ce4+ reduction was observed, which was in highly agreement with the poor NO_x conversion. It was worth mentioning that the peaks attributed to bulk Ce showed an abrupt shift from 761 to 645 °C, as the hydrothermal treatment temperature increased from 650 to 700 °C. This may be connected with the structural change, which was proved to be true by the XRD results in Fig. 6, as the hydrothermal treatment at 700 °C led to the formation of $Ce_{0.16}Zr_{0.84}O_2$ solid solution.

3.4.5. NH₃ and NO_x adsorption ability

In order to further investigate the influence of hydrothermal treatment on the adsorption ability of reaction species, the in situ DRIFTS of NH₃ and NO_x adsorption at 200 °C were conducted and the results are shown in Fig. 12(A) and (B), respectively. As shown in Fig. 12(A), no obvious band ascribed to adsorbed NH₃ species was observed on $CeNb_{3,0}Zr_2O_x$ catalyst hydrothermally aged at 850 °C. However, CeNb_{3.0}Zr₂O_x-800 °C sample still possessed large amount of adsorbed NH₃ species. The total amount of adsorbed NH₃ species over CeNb_{3.0}Zr₂O_x-650 °C, CeNb_{3.0}Zr₂O_x-700 °C and $CeNb_{3,0}Zr_2O_x-750$ °C was similar. As mentioned before, acid sites played a significant role in the adsorption and activation of NH₃ during the SCR process. Therefore, in combination with the H₂-TPR results of hydrothermal aged CeNb_{3.0}Zr₂O_x samples in Fig. 11, it was reasonable that the $CeNb_{3,0}Zr_2O_x$ catalysts hydrothermally aged between 650 and 750 °C showed similar SCR activity. In addition, the amount of adsorbed NO₃⁻ presented a minor decline with increasing aging temperature indicating that the basic sites over $CeNb_{3,0}Zr_2O_x$ were diminished after hydrothermal aging.

Fig. 12. In situ DRIFTS of 500 ppm NH₃ adsorption (A) and 500 ppm NO + 5 vol.% O_2 adsorption (B) with 300 mL/min flow rate at 200 °C on CeNb_{3.0}Zr₂ O_x catalysts hydrothermally treated at various temperatures.

4. Conclusions

A novel Nb doped CeZr₂O_x catalyst prepared by a homogeneous precipitation was used in the NH₃-SCR reaction. CeNb_{3.0}Zr₂O_x catalyst with the Nb/Ce molar ratio of 3.0:1 showed excellent SCR activity along with high N₂ selectivity, SO₂/H₂O resistance and remarkable hydrothermal stability. The characterization results demonstrated that the CeNb_{3.0}Zr₂O_x catalyst, a promising NH₃-SCR catalyst, possessed large surface area, strong redox ability and high reactive nitrate together with NH₃ species, all of which were responsible for the remarkable SCR performance. Furthermore, the CeNb_{3.0}Zr₂O_x catalyst still remained high redox ability together with affluent acid sites after hydrothermal aging below 800 °C, and was a promising candidate for the elimination of NO_x from diesel engine exhaust.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51221892) and the Ministry of Science and Technology, China (2013AA065301).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.apcatb.2015. 06.055

References

- H. Bosch, F. Janssen, Formation and control of nitrogen oxides, Catal. Today 2 (1988) 369–379.
- [2] G. Busca, L. Lietti, G. Ramis, F. Berti, Chemical and mechanistic aspects of the selective catalytic reduction of NO_x by ammonia over oxide catalysts: a review, Appl. Catal. B: Environ. 18 (1998) 1–36.
- [3] V.I. Pavulescu, P. Grange, B. Delmon, Catalytic removal of NO, Catal. Today 46 (1998) 233–316.
- [4] F.D. Liu, H. He, Y. Ding, C.B. Zhang, Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH₃, Appl. Catal. B: Environ. 93 (2009) 194–204.
- [5] J.P. Dunn, P.R. Koppula, H.G. Stenger, I.E. Wachs, Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts, Appl. Catal. B: Environ. 19 (1998) 103–117.
- [6] J. Kašpar, P. Fornasiero, M. Graziani, Use of CeO₂-based oxides in the three-way catalysis, Catal. Today 50 (1999) 285–298.
- [7] H.W. Jen, G.W. Graham, W. Chun, R.W. McCabe, J.P. Cuif, S.E. Deutsch, O. Touret, Characterization of model automotive exhaust catalysts: Pd on ceria and ceria-zirconia supports, Catal. Today 50 (1999) 309–328
- [8] M. Haneda, T. Morita, Y. Nagao, Y. Kintaichi, H. Hamada, CeO₂–ZrO₂ binary oxides for NO_x removal by sorption, Phys. Chem. Chem. Phys. 3 (2001) 4696–4700.
- [9] Y. Li, H. Cheng, D. Li, Y. Qin, Y. Xie, S. Wang, WO₃/CeO₂-ZrO₂, a promising catalyst for selective catalytic reduction (SCR) of NO_x with NH₃ in diesel exhaust, Chem. Commun. 12 (2008) 1470–1472.
- [10] S. Gao, X. Chen, H. Wang, J. Mo, Z. Wu, Y. Liu, X. Weng, Ceria supported on sulfated zirconia as a superacid catalyst for selective catalytic reduction of NO with NH₃, J. Colliod Interface Sci. 394 (2013) 515–521.
- [11] Z.C. Si, D. Weng, X.D. Wu, R. Ran, Z.R. Ma, NH₃-SCR activity, hydrothermal stability sulfur resistance and regeneration of Ce_{0.75}Zr_{0.25}O₂-PO₄³⁻ catalyst, Catal. Commun. 17 (2012) 146–149.
- [12] R.H. Gao, D.S. Zhang, P. Maitarad, L.Y. Shi, T. Rungrotmongkol, H.R. Li, J.P. Zhang, W.G. Cao, Morphology-dependent properties of MnO_x/ZrO₂-CeO₂ nanostructures for the selective catalytic reduction of NO with NH₃, J. Phys. Chem. C 117 (2013) 10502–10511.
- [13] P. Maitarad, D.S. Zhang, R.H. Gao, L.Y. Shi, H.R. Li, L. Huang, T. Rungrotmongkol, J.P. Zhang, Combination of experimental and theoretical investigations of MnO_x/Ce_{0.9}Zr_{0.1}O₂ nanorods for selective catalytic reduction of NO with ammonia, J. Phys. Chem. C 117 (2013) 9999–10006.
- [14] Z. Lian, F. Liu, H. He, X. Shi, J. Mo, Z. Wu, Manganese-niobium mixed oxide catalyst for the selective catalytic reduction of NO_x with NH₃ at low temperatures, Chem. Eng. J. 250 (2014) 390–398.
- [15] M. Casapu, O. Krocher, M. Mehring, M. Nachtegaal, C. Borca, M. Harfouche, D. Grolimund, Characterization of Nb-containing MnO_x-CeO₂ catalyst for low-temperature selective catalytic reduction of NO with NH₃, J. Phys. Chem. C 114 (2010) 9791–9801.

- [16] R. Qu, X. Gao, K. Cen, J. Li, Relationship between structure and performance of a novel cerium–niobium binary oxide catalyst for selective catalytic reduction of NO with NH₃, Appl. Catal. B: Environ. 142 (2013) 290–297.
- [17] K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity (recommendations 1984), Pure Appl. Chem. 57 (1985) 603–619.
- [18] S. Gao, P. Wang, X. Chen, H. Wang, Z. Wu, Y. Liu, X. Weng, Enhanced alkali resistance of CeO₂/SO₄²⁻-ZrO₂ catalyst in selective catalytic reduction of NO_x by ammonia, Catal. Commun. 43 (2014) 223–226.
- [19] P. Li, Y. Xin, O. Li, Z.P. Wang, Z.L. Zhang, L.R. Zhang, Ce–Ti amorphous oxides for selective catalytic reduction of NO with NH₃: confirmation of Ce–O–Ti active sites, Environ. Sci. Technol. 46 (2012) 9600–9605.
- [20] Z. Liu, J. Zhu, J. Li, L. Ma, S.I. Woo, Novel Mn–Ce–Ti mixed-oxide catalyst for the selective catalytic reduction of NO_x with NH₃, ACS Appl. Mater. Interfaces 6 (2014) 14500–14508.
- [21] X. Li, Y. Li, Selective catalytic reduction of NO with NH₃ over CeMoO_x catalyst, Catal. Lett. 144 (2013) 165–171.
- [22] Y. Peng, J. Li, L. Chen, J. Chen, J. Han, H. Zhang, W. Han, Alkali metal poisoning of a CeO₂–WO₃ catalyst used in the selective catalytic reduction of NO_x with NH₃: an experimental and theoretical study, Environ. Sci. Technol. 46 (2012) 2864–2869.
- [23] Z. Lian, F. Liu, H. He, Effect of preparation methods on the activity of VO_x/CeO₂ catalysts for the selective catalytic reduction of NO_x with NH₃, Catal. Sci. Technol. 5 (2014) 389–396.
- [24] I.E. Wachs, L.E. Briand, J.-M. Jehng, L. Burcham, X. Gao, Molecular structure and reactivity of the group V metal oxides, Catal. Today 57 (2000) 323–330.
- [25] H. Xu, Y. Wang, Y. Cao, Z. Fang, T. Lin, M. Gong, Y. Chen, Catalytic performance of acidic zirconium-based composite oxides monolithic catalyst on selective catalytic reduction of NO_x with NH₃, Chem. Eng. J. 240 (2014) 62–73.
- [26] S. Cai, D. Zhang, L. Zhang, L. Huang, H. Li, R. Gao, L. Shi, J. Zhang, Comparative study of 3D ordered macroporous Ce_{0.75}Zr_{0.2}M_{0.05}O₂₋₈((M = Fe, Cu, Mn, Co) for selective catalytic reduction of NO with NH₃, Catal. Sci. Technol. 4 (2014) 93-101.
- [27] J. Yu, Z.C. Si, L. Chen, X.D. Wu, D. Weng, Selective catalytic reduction of NO_x by ammonia over phosphate-containing Ce_{0.75}Zr_{0.25}O₂ solids, Appl. Catal. B: Environ. 163 (2015) 223–232.
- [28] S.Y. Christou, M.C. Álvarez-Galvan, J.L.G. Fierro, A.M. Efstathiou, Suppression of the oxygen storage and release kinetics in Ce_{0.5}Zr_{0.5}O₂ induced by P, Ca and Zn chemical poisoning. Appl. Catal. B: Environ. 106 (2011) 103-113.
- [29] B.Q. Jiang, Z.G. Li, S.C. Lee, Mechanism study of the promotional effect of O₂ on low-temperature SCR reaction on Fe–Mn/TiO₂ by DRIFT, Chem. Eng. J. 225 (2013) 52–58.
- [30] L. Chen, J. Li, M. Ge, DRIFT study on cerium-tungsten/titania catalyst for selective catalytic reduction of NO_x with NH₃, Environ. Sci. Technol. 44 (2010) 9590–9596.
- [31] X.L. Li, Y.H. Li, Molybdenum modified CeAlO_x catalyst for the selective catalytic reduction of NO with NH₃, J. Mol. Catal. A: Chem. 386 (2014) 69–77.
 [32] W.P. Shan, F.D. Liu, H. He, X.Y. Shi, C.B. Zhang, A superior Ce–W–Ti mixed
- [32] W.P. Shan, F.D. Liu, H. He, X.Y. Shi, C.B. Zhang, A superior Ce–W–Ti mixed oxide catalyst for the selective catalytic reduction of NO_x with NH₃, Appl. Catal. B: Environ. 115 (2012) 100–106.
- [33] Z.M. Liu, S.X. Zhang, J.H. Li, LL. Ma, Promoting effect of MoO₃ on the NO_x reduction by NH₃ over CeO₂/TiO₂ catalyst studied with *in situ* DRIFTS, Appl. Catal. B: Environ. 144 (2014) 90–95.
- [34] Z.B. Wu, B.Q. Jiang, Y. Liu, H.Q. Wang, R.B. Jin, DRIFT study of manganese/titania-based catalysts for low-temperature selective catalytic reduction of NO with NH₃, Environ. Sci. Technol. 41 (2007) 5812–5817.
- [35] N.Y. Topsoe, Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by *in situ* on-line Fourier transform infrared spectroscopy, Science 265 (1994) 1217–1219.
- [36] L. Chen, J.H. Li, M.F. Ge, L. Ma, H.Z. Chang, Mechanism of selective catalytic reduction of NO_x with NH₃ over CeO₂-WO₃ catalysts, Chin. J. Catal. 32 (2011) 836–841.
- [37] M. Casapu, O. Kroecher, M. Mehring, M. Nachtegaal, C. Borca, M. Harfouche, D. Grolimund, Characterization of Nb-containing MnO_x-CeO₂ catalyst for low-temperature selective catalytic reduction of NO with NH₃, J. Phys. Chem. C 114 (2010) 9791–9801.
- [38] F.D. Liu, K. Asakura, H. He, Y.C. Liu, W.P. Shan, X.Y. Shi, C.B. Zhang, Influence of calcination temperature on iron titanate catalyst for the selective catalytic reduction of NO_x with NH₃, Catal. Today 164 (2011) 520–527.
- [39] F.D. Liu, W.P. Shan, Z.H. Lian, L.J. Xie, W.W. Yang, H. He, Novel MnWO_x catalyst with remarkable performance for low temperature NH₃-SCR of NO_x, Catal. Sci. Technol. 3 (2013) 2699–2707.
- [40] B. Tsyntsarski, V. Avreyska, H. Kolev, T. Marinova, D. Klissurski, K. Hadjiivanov, FT-IR study of the nature and reactivity of surface NO_x compounds formed after NO adsorption and NO + O₂ coadsorption on zirconia- and sulfated zirconia-supported cobalt, J. Mol. Catal. A: Chem. 193 (2003) 139–149.
- [41] X.Q. Wang, A.J. Shi, Y.F. Duan, J. Wang, M.Q. Shen, Catalytic performance and hydrothermal durability of CeO₂–V₂O₅–ZrO₂/WO₃–TiO₂ based NH₃-SCR catalysts, Catal. Sci. Technol. 2 (2012) 1386–1395.
- [42] J. Liu, Z. Zhao, C. Xu, A. Duan, L. Wang, S. Zhang, Synthesis of nanopowder Ce–Zr–Pr oxide solid solutions and their catalytic performances for soot combustion, Catal. Commun. 8 (2007) 220–224.